हिंदी खबर
Representative image
Representative image

AI may not suffice to analyse data across multiple health systems

ANI | Updated: Nov 07, 2018 09:27 IST

Washington D.C. [USA], Nov 7 (ANI): Researchers have observed that artificial intelligence (AI) tools trained to detect pneumonia using chest X-rays suffered significant decreases in performance when tested on data from outside health systems.
According to a study conducted at the Icahn School of Medicine and published in a special issue of PLOS Medicine, these findings suggest that AI in the medical space must be carefully tested for performance across a wide range of populations; otherwise, the deep learning models may not perform as accurately as expected.
As interest in the use of computer system frameworks called convolution neural networks (CNN) to analyse medical imaging and provide a computer-aided diagnosis grows, recent studies have suggested that AI image classification may not generalise to new data as well as commonly portrayed.
Researchers assessed how AI models identified pneumonia in 158,000 chest X-rays across three medical institutions: the National Institutes of Health; The Mount Sinai Hospital; and Indiana University Hospital. They chose to study the diagnosis of pneumonia on chest X-rays for its common occurrence, clinical significance, and prevalence in the research community.
In three out of five comparisons, CNN's performance in diagnosing diseases on X-rays from hospitals outside of its own network was significantly lower than on X-rays from the original health system. However, CNNs were able to detect the hospital system where an X-ray was acquired with a high degree of accuracy and cheated at their predictive task based on the prevalence of pneumonia at the training institution.
Researchers found that the difficulty of using deep learning models in medicine is that they use a massive number of parameters, making it challenging to identify specific variables driving predictions, such as the types of CT scanners used at a hospital and the resolution quality of imaging.
"Our findings should give pause to those considering rapid deployment of artificial intelligence platforms without rigorously assessing their performance in real-world clinical settings reflective of where they are being deployed," said senior author Eric Oermann, MD. "Deep learning models trained to perform medical diagnosis can generalise well, but this cannot be taken for granted since patient populations and imaging techniques differ significantly across institutions."(ANI)