New finding 'may lead to genetic test that predicts heart failure beforehand'

   Jun 2, 4:18 pm

Washington, June 2 (ANI): The serendipitous chain of events that took place in a new study could lead to a genetic test that can help predict heart failure in certain people before it happens.

It started when members of Medical scientist Howard Young's team, Delaine Ceholski and Cathy Trieber, discovered a new mutation in a protein called phospholamban, which they predicted would cause the heart to be less responsive to changes in the body and eventually lead to heart failure.

One month after submitting their paper to the Journal of Biological Chemistry for review, their work was validated when - in completely separate research - the mutation was found in two patients in Brazil.

"We predicted it exactly," Young said.

"It's interesting, because as basic researchers you feel like you have to constantly defend your research and how relevant test-tube work is to patients... and then one day, to our surprise, we were right.

"I expected to be right, but not in the time frame that occurred. It happened quickly," he said.

Shortly after that, Young, who is an associate professor in the Faculty of Medicine 'n' Dentistry's Department of Biochemistry and researcher with the National Institute of Nanotechnology, was asked to speak at the Centennial Lectures, a speakers series offered by the faculty as a lead-up to the medical school's centennial year in 2013 to spotlight the translational work of its researchers.

Young was paired with cardiologist and researcher Justin Ezekowitz of the Department of Medicine.

Each became interested in the work of the other, and now the two are pairing up to screen patients' blood samples for mutations in the phospholamban protein.

"If someone had asked me last September if we'd ever get into sequencing patients' genes and trying to discover mutants, I would say 'no, you're wrong,' " said Young. "But now we're very interested in starting large sequencingstudies to try and find more mutations."

Through his research, Young thinks he has established good prediction models for heart disease.

If his research group finds a mutation in phospholamban through blood screening, Young believes he can predict the severity of the mutation and whether or not it will be associated with disease.

"It will be truly personalized medicine," Young said.

"If we know they [patients] have a mutation before disease, monitoring and early treatment could improve and extend the quality of life for these patients," he said.

Young and researchers in his lab will look at blood samples from about 750 patients at the Mazankowski Alberta Heart Institute.

Young expects to find at least two or three people with a mutation in phospholamban.

They'll also look for other mutations that have not been previously discovered.

"There's a related protein to phospholamban in the skeletal muscle and the atria of the heart, so we're branching out and going to see if we can identify new mutations, because no mutations have been identified in that protein," he added. (ANI)

Army ants efficient in 'minding the gap' Nov 30, 8:15 am
Washington D.C, Nov 30 (ANI): Army ants in South and Central America can teach humans a thing or two about efficient delivery as a new study suggests that they build bridges to shorten their journeys through the rainforest.
Full Story
New tech can make solar cells less `shiny`, more efficient Nov 30, 8:15 am
Washington D.C, Nov 30 (ANI): Scientists, including one of Indian-origin, have come out with a new technology that can boost the efficiency and lower the cost of solar cells.
Full Story
Early ecosystems were more complex than previously believed Nov 29, 8:01 am
Washington D.C, Nov 29 (ANI): An organism from 555 million years ago has shown that Earth's first ecosystems were more complex than previously believed.
Full Story
Human and bird's common sound production mechanism Nov 28, 2:47 pm
Washington D.C, Nov 28 (ANI): When birds and humans sing, it sounds completely different, but now new research shows that the very same physical mechanisms are at play when a bird sings and a human speaks.
Full Story