Why swine flu virus develops drug resistance

   May 30, 2:50 pm

Washington, May 30 (ANI): Using computer chips of a type more commonly found in games consoles , researchers have revealed how the swine flu virus resists anti-flu drugs like Relenza and Tamiflu.

Professor Adrian Mulholland and Dr Christopher Woods from Bristol's School of Chemistry, together with colleagues in Thailand, used graphics processing units (GPUs) to simulate the molecular processes that take place when these drugs are used to treat the H1N1-2009 strain of influenza - commonly known as 'swine flu'.

Their results provide new insight that could lead to the development of the next generation of antiviral treatments for flu.

H1N1-2009 is a new, highly adaptive virus derived from different gene segments of swine, avian, and human influenza.

Within a few months of its appearance in early 2009, the H1N1-2009 strain caused the first flu pandemic of the 21st-century.

The antiviral drugs Relenza and Tamiflu, which target the neuraminidase (NA) enzyme, successfully treated the infection but widespread use of these drugs has led to a series of mutations in NA that reduce the drugs' effectiveness.

Clinical studies indicate that the double mutant of swine flu NA known as IRHY2 reduced the effectiveness of Relenza by 21 times and Tamiflu by 12,374 times - that is, to the point where it has become an ineffective treatment.

To understand why the effectiveness of Relenza and Tamiflu is so seriously reduced by the occurrence of this mutation, the researchers performed long-timescale molecular dynamics (MD) simulations using GPUs.

"Our simulations showed that IRHY became resistant to Tamiflu due to the loss of key hydrogen bonds between the drug and residues in a part of the NA's structure known as the '150-loop'," Professor Mulholland said.

"This allowed NA to change from a closed to an open conformation. Tamiflu binds weakly with the open conformation due to poor electrostatic interactions between the drug and the active site, thus rendering the drug ineffective," Professor Mulholland added.

These findings suggest that drug resistance could be overcome by increasing hydrogen bond interactions between NA inhibitors and residues in the 150-loop, with the aim of maintaining the closed conformation.

The study has been published in Biochemistry. (ANI)

Wild animals interbred with domesticated ones until recently: Study Apr 19, 12:29 pm
Washington, Apr 19 (ANI): Recent research on the domestication of donkeys, camelids (which includes dromedaries, Bactrian camels, llamas and alpacas) pigs, cattle, sheep and goats suggests that neither intentional breeding nor genetic isolation were as significant as traditionally thought.
Full Story
Why eating processed meat can be cancerous for certain people Apr 19, 12:01 pm
Washington, Apr 19(ANI): A new study has found that a common genetic variant that affects one in three people, appears to significantly increase the risk of colorectal cancer from the consumption of processed meat.
Full Story
Brain's anti-distraction system found Apr 19, 11:32 am
Washington, Apr 19 (ANI): Two psychologists from Simon Fraser University have made a discovery that could revolutionize doctors' perception and treatment of attention-deficit disorders.
Full Story
Chronic inflammation associated with aggressive prostate cancer Apr 19, 11:18 am
Washington, Apr 19 (ANI): The presence of chronic inflammation in benign prostate tissue has been found to be linked with high-grade, or aggressive, prostate cancer, and this association was found even in those with low prostate-specific antigen (PSA) levels.
Full Story
Comments

LATEST STORIES
TOP VIDEO STORIES
PHOTO GALLERY